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Abstract

We construct a structural model for single-family house selling which relies on sale price,
time on the market, and latent listing price in a simplified economy. We perform an opti-
mization with our model to determine optimal listing price given housing covariates. This has
implications on how house sellers can maximize their profit when moving houses by gaming
in an imperfect information system. We also use Maximum Likelihood techniques to recover
model parameters from simulated real estate data.

1 Introduction

We present a simplified model of imperfect-information house selling which depends on
time on the market, housing characteristics, and listing price. There is a growing literature
which has established an empirical relationship between listing price and time on the market
(TOM) [1]. We suppose that our given data includes the final selling price and time taken
on the market to sell for each house, along with covariates. We further restrict to a relatively
small number of house types to simulate the sell-off of a finished group of housing develop-
ments. In the model, sellers list their house on the market at a price based on a function
of house characteristics, but with some noise (due to heterogeneous preferences, sentimental
value, regret, etc.) [2]. As the house stays on the market, final selling price decreases over
time due to the associated costs of real estate management, advertising, open houses, etc.,
but can also increase in the short run through competitive auctions between buyers.

Duration on the market is modeled similarly to standard continuous arrival times, with
distribution of arrival times being dependent on the perceived gap in value of the house.
In general, if a house is listed far below its perceived worth, it should sell off very quickly.
Conversely, if a house is listed far above its perceived worth, it should be expected to spend
more time on the market before being sold (as buyers bargain with the seller to reduce costs).
Further, we should expect some covariates to determine the influence of the value gap on
this distribution. There arises an opportunity for gaming the market here because the seller
might list the house for higher than it’s worth, then when the house is sold at closing price it
is lower than listing price but still higher than actual house value. This implies that sellers
could solve an optimization problem to determine the listing price which maximizes their
profit; we explicate and solve this problem below.

It is reasonable to assume that data of this type could be accessed for application of
the model. County auditors keep public records of sale price and closing dates for individual
houses. These data are aggregated and organized by companies like Title plants, which “keep
track of land titles and all related documents,” like sales data [3]. An extension of this paper
would use real data to calibrate our model, but such data is not currently available to us.
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2 Structural Model

Xi, the covariates of housing, are created as follows:

Xi = {#beds,#baths, size = {small,med, large}}

size = P (“small”, “med”, “large”; p1, p2, p3)

baths = beds =


rand(1, 2) size == small
rand(2, 3) size == med
rand(3, 4) size == large

This creates 12 distinct types/models of houses, in a similar manner to how a group of hous-
ing developments might choose the characteristics of the houses they create. This process
allows for randomness in the data while also imposing realistic restrictions on house char-
acteristics. In our simulation we assume p1 = p2 = p3 = (1/3) but we could change these
probabilities to easily reflect a different distribution of house sizes in the economy.

We begin by assuming that listing price is Normally distributed according to some func-
tion of house characteristics:

PL
i ∼ N (f(Xiβ), σL).

The function f allows us to alter where the distribution of PL
i is centered, so for example we

could add a quantity to Xiβ to reflect an initial higher offer by the seller; this could reflect a
game-theoretic approach for house selling. We assume that f is the identity function in our
simulation.

The Value Gap in the house is defined as

Vi(P
L
i ) = PL

i − Xiβ,

i.e. the difference between the listing price and the actual value of the house. In our simu-
lation, E[Vi] = 0, but for real seller behavior we would expect to observe E[Vi] > 0.

Duration on the market (TOM) follows an Exponential distribution as a function of the
Value Gap:

λi(Vi) =
( α
eVi
− c
)1/(1+γ)

> 0

Di ∼ Exponential(λi),

where α, γ are economic coefficients of interest, and c may be some associated cost. Each
house’s duration on the market is a random draw from an exponential distribution which
depends on the value gap as well as economic conditions. This distribution accounts for the
ideas posed above:

PL
i � Xiβ =⇒ λ ≈ 0 =⇒ Pr(Di ≤ ζ) small for ζ ∈ R

PL
i � Xiβ =⇒ λ� 0 =⇒ Pr(Di ≤ ζ) large for ζ ∈ R
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Finally, selling price is a function of both listing price (PL
i ) and market Duration:

Pi = PL
i − η(Di)

1/(1+ε),

again with associated economic coefficients of interest. This implies that final selling price
is decreasing in duration with associated costs: if the house were to sell immediately, it
would sell at listing price, while if the house takes a long time to sell, its final price will be
significantly lower than listing price. But this also allows for a gaming opportunity in PL

i .
In the next section, we analyze this opportunity with an optimization approach.

3 Optimal Selling

From our model parameter estimates, we can now find the optimal listing price given
house characteristics Xi. We maximize the following expected selling price Pi:

max
PLi

{
E[P ∗i |PL

i ,Xi]
}

= max
PLi

{
E
(
PL
i − η(Di)

1/(1+ε) | PL
i ,Xi

)}
= max

PLi

{
PL
i − ηE

(
(Di)

1/(1+ε) | PL
i ,Xi

)}
In the simpler case where ε = 0 and c = 0, then we can get a closed form solution for PL∗

i :

PL
i = log(α) + (1 + γ) log(1 + γ)− (1 + γ) log(η) + Xiβ

See Appendix A.1 for the derivation.

We also present an algorithm for computation of the general case:

1. Calculate

PL
i − ηE

[
D1/(1+ε) | PL

i , Xi

]
= PL

i − η
∫
R+

D
1/(1+ε)
i · λie−λiDi dDi.

2. Then maximize:

0 =
∂

∂PL
i

PL
i − η

∫
R+

D
1/(1+ε)
i · λie−λiDi dDi

1

η
=

∂

∂PL
i

∫
R+

D
1/(1+ε)
i · λie−λiDi dDi.

3. Compute the expression above in terms of PL
i .

We use this algorithm to create plots over potential values of PL
i in Figure 1 and Figure 2.
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4 Results/Conclusion

Through our paper we recover the parameters of our model by using Maximum Likeli-
hood estimation strategy. Our derivation of the ML estimator can be seen in Appendix A.1.
Because our model contains nine parameters as well as an integral over R, the ML estimator
is computationally taxing. We were able to run the MLE using a sampled dataset with 20
observations. The results can be seen in Table 1.

For MLE, the identification condition is that ∀θ 6= θ′, L(θ|X) 6= L(θ′|X). When setting
the initial guess near the true parameters, we recover estimates near the true parameters as
shown in Table 1. However, when setting the initial guess randomly, we do not necessarily
recover the true parameters. We believe that the log-likelihood function has many local
maxima, and thus we may not converge to the global maximum unless we guess parameter
values close to the true values. We also believe this could be caused by small sample bias,
as we are simulating only 20 data points. Therefore, in practice, we can take many different
initial guesses and take the estimates that give the highest log-likelihood value.

Table 1: Parameter Estimates
Parameter DGP Estimates

β [2, 1.75, 3] [2.92, 1.63, 2.49]

σ 1 0.57

α 1 1.00

c 0 5.57e-06

γ 1 1.00

ε 1 1.20

η 10 10.07

Observation Number: 20
Log-likelihood: -34.48
Run time: 22 min 24 secs

For MLE, we can construct relevant standard errors using the Fisher information matrix.
In theory, we can solve this as the following:

var(θ) = [I(θ)]−1

I(θ) = −E[H(θ)]

H(θ) =
∂2 lnL(θ)

∂θ∂θ′

Therefore, we have the variance-covariance matrix as the following:

var(θMLE) =

(
−E

[
∂2 lnL(θ)

∂θ∂θ′

])−1
In our paper, we computed the standard errors numerically. They can be seen in Table 2.
The standard errors are large relative to the coefficients because of the small sample size.
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Table 2: Standard Errors
Parameter Std. err.

β [3.30 2.49 0.75]

σ 0.31

α 1.0

c 1.0

γ 1.0

ε 0.80

η 1.96

We present graphs of our general model in the Appendix. Keeping parameters around
the truth, Figure 1 plots selling price for a range of listing prices, for all possible house
types. The graphs all exhibit the predicted behavior based on intuition: as listing price
increases, selling price initially increases (due to gaming), attains a maximum, then quickly
decreases (due to costs and buyer attitude). In Figure 2, we perform comparative statics
on the parameters (α, ε, η, γ) for a representative household type. To analyze the effects of
the parameters, we restrict to the simplified-case optimal listing price (PL

i ) when ε = 0 and
c = 0, so we can use the closed-form solution for PL

i :

PL
i = log(α) + (1 + γ) log(1 + γ)− (1 + γ) log(η) + Xiβ (*)

• From Figure 1, we observe that better housing characteristic Xi increases the optimal
listing price. This is expected from our analytical expression for PL

i from (*).

• From Figure 2, we observe that increasing α strictly increases the optimal listing price.
This is expected from our analytical expression for PL

i from (*).

• From Figure 2, we observe that increasing η strictly decreases the optimal listing price.
This is expected from our analytical expression for PL

i from (*).

• From Figure 2, the effect of increasing γ on optimal listing price depends on the value
of γ relative to the other parameters. We derive the relationship between PL

i and γ in
Appendix A.5. The results are the following:

PL
i


decreasing
constant
increasing

 in γ if


γ < log−1(log(η)− 1)− 1
γ = log−1(log(η)− 1)− 1
γ > log−1(log(η)− 1)− 1


• From Figure 2, the effect of increasing ε on optimal listing price is unclear. We cannot

use the simplified equation (*) because it assumes ε = 0.

Our results reflect the game-theoretic and auction-theoretic motivations of the model.
A house seller can increase their final selling price up to a certain point by increasing their
listing price above the value of the house. This comes from the idea that buyers have high
demand for the house and, in a relatively crowded market, are willing to take a suboptimal
offer to beat out their competitors. The model also reflects market friction, since no house
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is sold immediately on the market; there are factors which slow down the process of selling
the house. To further extend the game-theoretic implications of the model, we could let the
above model represent the first stage in a multi-stage game of market selling which alternates
between seller and buyer strategies each round. This would of course become much more
complicated but would better reflect the back-and-forth nature of market exchange behavior.

Since the MLE strategy is computationally expensive, we hope to use expection-maximization
(EM) estimation strategy going forward. Our derivation of the EM algorithm can be seen
in Appendix A.3. One reason we are having numerical difficulties is because in the MLE
log-likelihood expression, we have log of an integral. However, by using Jenson’s inequality
through EM algorithm, we can make the expected log-likelihood have the log inside the
integral. We also have code to implement our algorithm, but we could not complete running
the code given the time frame.
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A Appendix

A.1 Optimal Selling

Derivation for optimal list price in the simple case (ε = c = 0):

E
(
PL
i − ηD

1/(1+ε)
i | PL

i ,Xi

)
= PL

i − ηE[Di | PL
i ,Xi]

= PL
i − η ·

1

λi

= PL
i − η ·

eVi −
=0︷︸︸︷
c

α


1/(1+γ)

= PL
i − η ·

(
eP

L
i −Xiβ

α

)1/(1+γ)

E[P ∗i |PL
i ] = max

PLi

PL
i − η ·

(
eP

L
i −Xiβ

α

)1/(1+γ)

⇐⇒ 1− η

α(1 + γ)

(
eP

L
i −Xiβ

α

)−γ/(1+γ)
· ePLi −Xiβ = 0

α(1 + γ)

η
=

(
eP

L
i −Xiβ

α

)−γ/(1+γ)
· ePLi −Xiβ

α(1 + γ)

η
= αγ/(1+γ)e(P

L
i −Xiβ)(1−γ/(1+γ))

α1/(1+γ)1 + γ

η
= e(P

L
i −Xiβ)(1/(1+γ))

log

(
α1/(1+γ)1 + γ

η

)
= (PL

i − Xiβ)(1/(1 + γ))

PL
i = (1 + γ) log

(
α1/(1+γ)1 + γ

η

)
+ Xiβ

PL
i = log(α) + (1 + γ) log(1 + γ)− (1 + γ) log(η) + Xiβ
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A.2 Maximum Likelihood Derivation

For each individual, we have the following likelihood function:

Li(Pi, Di,Xi|θ) = f(Pi|Di,Xi, θ) · f(Di,Xi|θ)
= f(Pi|Di,Xi, θ) · f(Di|Xi, θ) · f(Xi|θ)

= f(Pi|Di,Xi, θ) · f(Xi|θ) ·
∫ ∞
−∞

f(Di, P
L
i |Xi, θ)dP

L
i

= f(Pi|Di,Xi, θ) · f(Xi|θ) ·
∫ ∞
−∞

f(Di|PL
i ,Xi, θ) · f(PL

i |Xi, θ)dP
L
i

Here, assume that {Pi, Di, Xi} are iid over observations. So, for N individuals, the likelihood
function becomes the following:

L({Pi,Xi, Di}Ni |θ) = ΠN
i=1f(Pi|Di,Xi, θ) · f(Xi|θ) ·

∫ ∞
−∞

f(Di|PL
i ,Xi, θ) · f(PL

i |Xi, θ)dP
L
i

Here, we have the following functional form:

Pi = PL
i − ηDi

We know that the distribution for PL
i has the following distribution:

PL
i ∼ N (f(Xiβ), σL)

Therefore, we have the following distribution for Pi when Di is known:

Pi|Di ∼ N (f(Xiβ)− ηD
1

1+ε

i , σL)

So, the likelihood becomes:

L(Pi,Xi, Di|θ) = ΠN
i=1

1

σL
√

2π
exp

−1

2

(
Pi − f(Xiβ) + ηD

1/(1+ε)
i

σL

)2


·
∫ ∞
−∞

(
α

Xiβ − PL
i

− c
)1/(1+γ)

· exp

(
−
(

α

Xiβ − PL
i

− c
)1/(1+γ)

·Di

)

· 1

σL
√

2π
exp

(
−1

2

(
PL
i − f(Xiβ)

σL

)2
)
dPL

i
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logL(Pi,Xi, Di|θ) =
n∑
i=1

log

 1

σL
√

2π
exp

−1

2

(
Pi − f(Xiβ) + ηD

1/(1+ε)
i

σL

)2


+ log

(∫ ∞
−∞

(
α

Xiβ − PL
i

− c
)1/(1+γ)

· exp

(
−
(

α

Xiβ − PL
i

− c
)1/(1+γ)

·Di

)

· 1

σL
√

2π
exp

(
−1

2

(
PL
i − f(Xiβ)

σL

)2
)
dPL

i

)

=
n∑
i=1

log

 1

σL
√

2π
exp

−1

2

(
Pi − f(Xiβ) + ηD

1/(1+ε)
i

σL

)2


+ log

(∫ ∞
−∞

λi exp (−λi ·Di) ·
1

σL
√

2π
exp

(
−1

2

(
Vi
σL

)2
)
dPL

i

)

=
n∑
i=1

− log
(
σL
√

2π
)
− 1

2

(
Pi − f(Xiβ) + ηD

1/(1+ε)
i

σL

)2

− log
(
σL
√

2π
)

+ log

(∫ ∞
−∞

λi exp (−λi ·Di) exp

(
−1

2

(
Vi
σL

)2
)
dPL

i

)

=
n∑
i=1

−2 log
(
σL
√

2π
)
− 1

2

(
Pi − f(Xiβ) + ηD

1/(1+ε)
i

σL

)2

+ log

(∫ ∞
−∞

λi exp (−λi ·Di) exp

(
−1

2

(
Vi
σL

)2
)
dPL

i

)
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A.3 Expectation Maximization Derivation

In the expectation step, we compute:

P (PL
i |Pi, Di,Xi, θ

τ ) =
P (PL

i , Pi, Di|Xi, θ
τ )

P (Pi, Di|Xi, θτ )

=
P (PL

i , Pi, Di|Xi, θ
τ )

P (Pi|Di,Xi, θτ ) · P (Di|Xi, θτ )

=
P (Pi|PL

i , Di,Xi, θ
τ ) · P (PL

i , Di|Xi, θ
τ )

P (Pi|Di,Xi, θτ )
∫∞
−∞ P (Di, PL

i |Xi, θτ )dPL
i

=
P (Pi|PL

i , Di,Xi, θ
τ ) · P (Di|PL

i ,Xi, θ
τ )P (PL

i |Xi, θ
τ )

P (Pi|Di,Xi, θτ ) ·
∫∞
−∞ P (Di|PL

i ,Xi, θτ ) · P (PL
i |Xi, θτ )dPL

i

In the maximization step, we maximize the following:

Q(θ|θτ ) =

(
N∑
i=1

E[log[P (Pi, Di, P
l
i |Xi, θ)]|Pi, Di,Xi, θ

τ ]

)

=

(
N∑
i=1

∫ ∞
−∞

P (P l
i |Pi, Di,Xi, θ

τ ) log[P (Pi, Di, P
l
i |Xi, θ)]dP

l
i

)

=

(
N∑
i=1

∫ ∞
−∞

P (P l
i |Pi, Di,Xi, θ

τ ) log[P (Pi, Di|P l
i ,Xi, θ)P (P l

i |Xi, θ)]dP
l
i

)

=

(
N∑
i=1

∫ ∞
−∞

P (P l
i |Pi, Di,Xi, θ

τ ) log[P (Pi|Di, P
l
i ,Xi, θ)P (Di|P l

i ,Xi, θ)P (P l
i |Xi, θ)]dP

L
i

)
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A.4 Comparative Statics

Figure 1: Graphs of Listing Price vs Selling Price for all types of houses, by house size

Figure 2: Graphs of Listing Price vs Selling Price for a representative household, varying
certain parameters
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A.5 Effect of γ on Optimal PL
i

We have

PL
i = log(α) + (1 + γ) log(1 + γ)− (1 + γ) log(η) + Xiβ[

∂

∂γ

]
: RHS = log(1 + γ) +

1 + γ

1 + γ
− log(η)

= log(1 + γ) + 1− log(η)

So we get:

RHS


<
=
>

 0 if


γ < log−1(log(η)− 1)− 1
γ = log−1(log(η)− 1)− 1
γ > log−1(log(η)− 1)− 1


This leads us to:

PL
i


decreasing
constant
increasing

 in γ if


γ < log−1(log(η)− 1)− 1
γ = log−1(log(η)− 1)− 1
γ > log−1(log(η)− 1)− 1


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