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Research Question

Research Question

How effective are policies aimed at restricting social mobility on COVID-19 related
mortality?

Identification Issue

¥ Social mobility measures are contaminated by measurement error — Attenuation
Bias.

® Many potential controls that are correlated with social mobility (endogeneity issue
lead to omitted variable bias and reverse causality) — Diff-in-Diff.

¥ Difficulty to find an instrument that satisfied both relevance and exclusion
restriction.
Goals

Estimate the causal effect by using instrument rainfall.

Quantify the bias from measurement error and endogeneity.
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Literature Review

® Adda (2016): social distancing on viral spread in France. Endogeneity, serial
correlation — weather IV

® Qiu et al. (2020): climate IV to measure social distancing on coronavirus spread in
China

® Dave et al. (2020) and Villas-Boas et al. (2020): DiD to measure policy on social
distancing
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Figure: Time Series of Mobility Level in Texas
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Empirical Model

J
AD; = Po+ Z BiASD; t—145 + mPas + Xixs +viXi -t + €

j=1
¥ i and t are subscripts for state and week.
® AD;; denotes the change in COVID-19 related deaths per capita.

® P, . are indicator variables for whether a particular policy was implemented
(Emergency Declaration and Gather Restrictions)

¥ ; is a state indicator variable and x; - ¢t capture linear trends for each state.
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Data Sources

¥ Social Mobility

1) Descartes Lab (Warren and Skillman (2020)): Daily index of absolute "level” of
mobility

2) Unacast (Unacast (2020)): Daily percent change in mobility
3) Twitter (Xu et al. (2020)): Weekly index of mobility

® Policy (Fullman et al. (2020)): Date enacted for Emergency Declaration and
Gathering Restrictions.

® Rainfall (Community Collaborative Rain, Hail, & Snow Network (n.d.)): Average
daily rainfall for each state in inches.

¥  Mortality (Systems Science and Engineering at Johns Hopkins University (2020)):
Daily COVID-19 related cases and mortality for each state.
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Instrument Relevance

ASD;+ = BAR; + + P{,m + Aixs + vixit

® P, ; refer to whether a policy was implemented at time ¢
® ; is a State indicator

® ¢t is the week number (which we treat as a continuous variable to capture a trend
effect)
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Instrument Relevance

Figure: Time Series of Mobility Change and Rainfall Change in Texas
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Instrument Relevance

Figure: First Stage: Residualized Rainfall Change versus Residualized Social Distancing Change
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Instrument Relevance

Table: First Stage: Change in Mobility

Descartes Lab Unacast Twitter
(6] @) [€)] “) (5) ©) (U] ®) ©) (10) (€3] (12)
AAvg. Precipitation, SLB04YF  -LBOS*Rr  -2066***  -L626***  -0.465%** -0470%**  -05II***  -0.445** 0318 -0.258 0.100 0.250
(0337)  (0.363) (0.301) (0.416) (0.097)  (0.104) (0.098) (0.123) (0.465)  (0.506) (0.634) (1.807)
Emergency Declaration S1490%**  -3.438%** 0575 -0.817*** -0.652+** -0.308
(0.218) (0.388) (0.062) (0.102) (0.117) (0.664)
Gathering Restriction (Any): -0316 25417+ 0.059 ~0.574** -0.215% -0.729
(0.247) (0.416) 0.091) (0211) (0.125) (0.621)
ACOVID Mortality Per Capita, 1 16461470 3.8de+04%* 4278.941%*%  —6865.073** 3040105 252106
(6.490.225)  (15019.083) (1483819)  (3,165.341) (85588.700)  (4.13¢+06)
Constant SO507HHE _053G*HF 0.044%*F _ISHOIFKY 0.206%**  0241%%*  (.151%* 0524 -0504***  -0.400*** 0004
(0.025)  (0.003) (0.004) (5.758) (0.001)  (0.002) (0.031) (1.683) (0033)  (0.025) (0.055) (15.223)
400 400 400 400 450 450 450 450 260 260 200 200
R 0.028 0042 0.201 0717 0.015 0015 0.189 0.494 0.002 0.074 0343 0705
Adj. R? 0.025 -0.005 0.079 0541 0013 -0.108 0.080 0232 0002 -0.159 0.104 0276
State FE No Yes Ves Yes No Yes Yes Yes No Yes Yes Yes
State - Week No No No Yes No No No Yes No No No Yes
F-stat 287 247 470 153 231 206 275 131 467 260 025 0.019

Robust standard errors in parentheses. Standard errors clustered by state.
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Exclusion Restriction

1. Tosepu et al. (2020) document empirical relationship between coronavirus
transmission and meterological variables (temperature, humidity, and rainfall) in
Indonesia. Find a relationship for temperature & humidity but not for rainfall.

2. Pica and Bouvier (2012) review literature covering relationship between respiratory
viruses and meterological factors. They find that the relationship between rainfall
and virus transmission is very non-robust, it varies significantly with the country
(even province of study).

3. Lowen and Steel (2014) provide experimental evidence for and review scientific
models concerning the relationship between influenza and temperature & humidity.

4. Although other meterological factors seem important for viral transmission, this does
not appear to be true for rainfall.

5. We had trouble collecting other meterological data, a future version of the paper
ideally should include temperature & humidity controls.
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Variable Selection

Lasso Regression:

2

J P
mﬁinz Diy— o — ZﬁjSDm,lH — C{’m subject to Z 18] <t

i=1 j=1 j=1

Interested in finding the correct lags, while keeping the other controls in the regression
model (Ci:). Apply Frisch-Waugh Theorem:

N J N P
mﬁinz McDiy =Y BiMcSDii-14s | +X3Y 15|
i=1 j=1

Jj=1
We run the following regression model:

McDi,t = McSD/J) + )\|,3|
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1) Split the data into in-sample and out-of-sample data.

2) Using the in-sample data, generate McD; and McSD; ;. These are residuals from
an OLS regression of D;; and SD; on C;; respectively.

3) Using the in-sample data, regress McSD;+ on R, and store the predicted

McSD; ;. This is equivalent to the predicted values from the first stage of an IV
regression.

4) Consider a list of possible A values that can be used for the Lasso regression.

5) For each A, using the in-sample data, run the following Lasso Regression:
McD; = mi,tﬁ + Al

6) Using the out-of-sample data, calculate the MSE based on our estimates from (5).
Store the MSE value.

7) Repeat (5) - (6) for the range of \ considered in (4). Choose the )\ that gives the
lowest MSE.

8) Given this optimal A parameter, find the lagged variables where 3; > 0.

Kei Irizawa, Adam Oppenheimer, and Jason Yang May 26, 2020 19/33



Lasso Results

Figure: Coefficient Estimates for a range of A
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Lasso Results

Figure: MSE for Range of A
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e Second Stage: Change in COVID Mortality Per Capita (lag 3)

Descartes Lab Unacast Twitter
(6] @ 3) *) 5) ©) @ ®) ) (10) [¢5))] (12)
AMobility, 6.45¢-06***  3.83e06**  2.76e-06* 1.06e-06 180e05%%  1.90e05%*  110e-05* 305e06  -120e04 -163e04 19304  247e05
(236e-06)  (160e-06)  (158e-06)  (134e-06)  (8.33e-06)  (8.87e-06)  (6.63e-06)  (240e-06)  (1.94e-04) (286e-04) (105e-03)  (7.49e-05)
Emergency Declaration s ~1.92¢-06 ~126e-06 9.78e-06***  —6.65¢.06"* 129e04 61306
(4.85¢-06)  (4.01e-06) (358¢-06)  (3.03¢-06) (6.79e.04)  (3.89¢-05)
Gathering Restriction (Any). 3 237e.05°%*  -2.76e-06 2146057 -1.44e-06 568e:05  5.68e06
(7.15¢:06)  (2.85e-06) (6.88¢-06)  (2.19e-06) (231e04)  (1.85¢-05)
ACOVID Mortality Per Capita, s 41901 -6.81e+00%** 855e-01%*  -5.77e-+00%** -5.45e+01  -1.50e+01
(434e:01)  (1.60e+00) (3.92e:01)  (1.25¢+00) (321e+02)  (6.20e+01)
Constant 278054 128e-05°F%  —130e-06  —7.49e05%**  231e-05*** 134e-05°** 640-06** 7.73e05"** —6.86e-05 —6.00e05  4.41e.07 81305
(633e-06)  (190e06)  (226e-06)  (158e-05)  (5.84e.06)  (3.05e-06)  (3.07e-06)  (163e:05)  (1.15e:04) (113e04) (122e05) (4.55¢-05)
N 250 250 250 250 300 300 300 300 260 260 200 200
R 0626 0.705 0.970 0412 0.620 0.958 . 0.662
Adj. R? 0533 0.625 0.949 0204 0.538 0.935 0.299
State FE No Yes Ves Ves No Yes Yes Yes No Yes Yes Yes
State - Week No No No Yes No No No Yes No No No Yes

Robust standard errors in parentheses. Standard errors clustered by state
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Setting

Apply idea presented by Acemoglu et al. (2001).

¥ SD; (Descrates Lab): a random variable that measures SD with error, so that

Sb1 =SD +wu;

¥ SD, (Unacast): another random variable that measures z with error, so that

Sbg =8SD + us

® z: a good (relevant and exogenous) instrument for x
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Bias Calculation

® The omitted variable bias if you observed McSD and used it in the initial regression
can be represented as the following:

Cov(e, McSD) IV _ gV _

= ~1.19%x107%-1.19x 10~ —1.31 x 107°
Var(MoSD) 5o 9 x 10 9 x 10 31 x 10

/BOLS

® The bias due to the omitted variables in can be represented as the following:

Cov(e, McSD) _ pOL® (8L — 1Y)
Var(MCSbl) é;/ "2 B
3.75 x 107°

= 70 10s (119 % 107 —1.19x 107°) ~ 4.13 x 107°

BOLS

® The bias due to measurement error in can be represented as the following:

Var(McSD) — po"% 375 x10°° 315
Var(McSDy)  BLY — —119x10-6¢ ©~ 7

T2
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Conclusion

® We analyze direct causal relationship between social mobility and COVID-19 related
mortality.

¥ We used lasso implementation to select lags of social mobility in our empirical model.

® We estimate a substantial positive effect of social mobility on COVID-19 related
mortality.

® We measure the bias from measurement error and endogeneity. The bias from
measurement error is much larger than bias from endogeneity.
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Questions

® Measurement Bias: Can we have negative bias?

® Panel data identifying assumption and relation to IV regression?
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