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Abstract

This paper estimates the effect of mobility (social distancing) on future COVID-19 mortality in the
United States. By using mobility indices that directly track cellphones, we can estimate the effect of a
standard deviation increase in mobility on future mortality without using proxies for mobility. To solve
omitted variable bias and measurement error issues we use rainfall as an instrumental variable; to find
how far in the future mobility affects mortality we use LASSO. Finally, we decompose the bias in naive
OLS into measurement error and omitted variable bias by considering two mobility indices (by Descartes
Lab and Unacast). Using both datasets, we estimate two statistically similar effects. A one standard
deviation spike in mobility is associated with a spike of 7.34 (15.1) deaths per million people 3 weeks
in the future using the Descartes Lab (Unacast) datasets. These numbers are large in magnitude, as
COVID-19 resulted in 96.7 deaths per million in the week of April 20, the last week of our data. Finally,
our bias decomposition shows that measurement error is a much greater concern than omitted variable
bias. This suggests that we should be careful in interpreting regression results using cellphone data that
do not consider measurement error.

keywords: COVID-19, Coronavirus, IV, Measurement Error, LASSO, Mobility Data, Social Distancing
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1 Introduction

Does social distancing reduce the spread of viral outbreaks? And how long do we have to wait until we can

see the effects of social distancing? Anecdotal evidence and preliminary research investigating the coronavirus

outbreak suggest that social distancing works after 2-3 weeks. However, few studies have a robust claim to

causality because social distancing is a choice variable based on how dangerous it is outside (unknown bias)

and because social distancing indices have a lot of measurement error (attenuation bias). Our paper attempts

to remedy the endogeneity and measurement error issue through an instrumental variables (IV) approach

and explicitly estimates the appropriate lagged effect with LASSO. By using multiple mobility indices and

a relevant & exogeneous instrument, we can decompose the bias in the endogeneous linear regression into

attenuation bias and omitted variable bias. We find that measurement error is a much greater concern than

omitted variable bias.

Our paper draws from a number of literatures that estimate the effect of mobility on virus spread.

Papers investigating this causal effect tend to use either an instrumental variables or differences-in-differences

approach. Mobility tends to be measured directly by tracking cell phones or proxied by government-imposed

mobility restrictions.

The foundational paper investigating the causal effects of social distancing on virus spread is Adda

(2016). Utilizing weekly spatial data on the spread of multiple viruses in France in the 20th century, they

estimate the effect of social distancing policies (such as school closures) on outbreak levels. They estimate

the spread of a virus within and between cities using a linear version of the susceptible-infected-recovered

(SIR) model that includes lagged infection rates. They use weather as an instrumental variable to solve for

potential serial correlation and measurement error introduced by using lagged infection rates. Variations

on this model have been incorporated into research estimating the effect of social distancing policies on the

coronavirus outbreak. For example, Qiu et al. (2020) study Chinese city-level outbreak data and consider

multiple lagged climate variables as instruments and proxy mobility with weighted sums of infection rates

in nearby cities. Our paper incorporates many aspects of this model, including weather as an instrumental

variable. Our paper differs from this research in that we use mobility data rather than a proxy for mobility

and use US outbreak data.

Research into the coronavirus more commonly estimates causal effects through the differences-in-differences

design (DiD) or regression discontinuity design (RDD) frameworks. Most relevant to our paper, Dave et al.

(2020) use DiD and event study techniques to estimate the effect of shelter-in-place orders on COVID-19

cases through its effect on mobility. They estimate a 5-10% increase in the rates of individuals staying home

full-time, leading to a 44% decline in cumulative cases three weeks after the adoption of such orders. Villas-

Boas et al. (2020) do the same with only a DiD design. They estimate a 5% reduction in average distance

traveled, 6% reduction in non-essential visits, and 23% reduction in human interactions immediately after

the adoption of such orders. This decline in mobility reduced mortality by 0.5 deaths per million residents
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per day. Some other papers using DiD and RDD on coronavirus related topics are Brodeur et al. (2020)

(effect of lockdowns on psychological factors), He et al. (2020) (effect of lockdowns in China on pollution),

and Tucker and Yu (2020) (relationship between in-person dining bans and retail traffic).

The broader literature investigates the relationship between social distancing policies, mobility measures,

and various outcomes. Some papers investigate the effectiveness of social distancing policies, or the effect of

policy implementation on mobility reductions. For example, Engle et al. (2020) examine the relationships

of stay-at-home orders and two-week lagged COVID-19 infection rates on future mobility. They estimate

a 7.87% reduction in mobility after the implementation of stay-at-home orders, but also measure hetero-

geneity across a number of factors. Wellenius et al. (2020) estimate the effect of various social distancing

policies on mobility in the next week. They estimate a 10% reduction in time spent away from home after

state-of-emergency declarations, with cumulative effects as more policies are adopted. Other papers consider

health, economic, or political effects. Liautaud et al. (2020) and Zhang et al. (2020) use lagged change in

mobility to estimate effects on fever incidence rates in the US after the start of the coronavirus pandemic.

Alexander and Karger (2020) and Baker et al. (2020) look at the relationship between stay-at-home orders

and consumer spending, mediated through mobility. Both measure heterogeneity in mobility changes across

various measures. Blais et al. (2020) estimate the relationship between coronavirus lockdowns in Europe and

changes in voting intentions, trust in government, and support for democracy. Building off the observed het-

erogeneity in mobility responses, we choose to include state fixed effects in our main regression specifications.

This allows us to control for any state-level heterogeneity that is fixed over short periods of time.

Our paper is structured as follows. In Section 2, we discuss our empirical model. In Section 3, we discuss

our data sources. In Section 4, we argue why our instrumental variable, rainfall, satisfies the relevance

and exclusion restriction requirements. In Section 5, we use the LASSO to determine the correct number

of lags for mobility to include in our empirical model. In Section 6, we analyze our IV regression results.

In Section 7, we decompose the bias from a naive OLS into measurement error and omitted variable bias.

Section 8 concludes.

2 Model

2.1 Empirical Model

We are interested in investigating the causal effect of changes in mobility on changes in COVID-19 related

mortality. We consider the following regression model:

∆Dit = β0 +

J∑
j=1

βj∆MBi,t−1+j + ζj∆Di,t−2+j + η1Pi,t + λiχi + γiχi · t+ εi,t (1)
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where i and t subscripts denote state and week respectively. ∆Di,t denotes the change in COVID-19 related

deaths per capita, ∆MBi,t denotes the change in social distancing, Pi,t are various policy indicators, χi are

state indicators, and χi · t capture linear trends for each state.

Existing literature indicates significant heterogeneity in COVID-19 mortality rates across many demo-

graphic variables. However, these variables, such as population, proportion of people aged 65 and older, or

political support, will stay approximately constant over the 3-month panel. As a result, they are absorbed

into the time-invariant state level fixed effects. As this paper does not investigate demographic heterogene-

ity, we choose not to include individual controls for these variables. Further, including these controls would

introduce significant collinearity with the state level fixed effects, unnecessarily increasing the variance of

our estimates. This is of notable concern given the small number of observations in our sample.

Our model also includes lagged effects of changes in social distancing on changes in COVID-19 outcomes.

This is because the decision to socially distance today is expected to affect virus outcomes for possibly several

weeks into the future. However, it is difficult to know how many lagged terms (J) to include. We apply

the LASSO approach to choose the J most relevant lags for predicting COVID-19 outcomes. We detail this

approach in Section 5.

We also include a lagged term for COVID-19 death in our regression because we believe a spike in deaths

could induce people to stay indoors and because it also shows what part of the infection phase we are on.

3 Data

Our outcome of interest is changes in COVID-19 mortality per capita at the state level. A daily time

series of this data comes from Science and at Johns Hopkins University (2020). Data for our endogenous

regressor, mobility, are gathered from three sources: Descartes Lab (Warren and Skillman (2020)), Unacast

(Unacast (2020)), and Twitter (Xu et al. (2020)). Data for our instrumental variable, rainfall, are collected

from Community Collaborative Rain (n.d.). Finally, data for our policy controls are collected from Fullman

et al. (2020). We convert all variables into change in level by week except for the policy indicators to fit our

regression specification.

Descartes Lab and Twitter report levels of mobility at a daily and weekly frequency, respectively, while

Unacast reports percent change in mobility from baseline at a daily frequency. To make the Unacast data

comparable to the Descartes Lab and Twitter data, we convert it to levels by adding back the baseline for

each state and day. Once we have all three datasets in levels, we average the Descartes Lab and Unacast

data at the weekly level. This is done to make them comparable to the Twitter data (this has the additional

benefits of reducing noise from the rainfall data and removing the need to include day-of-week controls).

Because in the Unacast data the baseline is set to 1 for each state, we cannot compare mobility across

states. Given this constraint, we normalize all three datasets at the state level once they have been averaged

by week. Once the measures have been properly adjusted, particular measurements can be interpreted as
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standard deviations from average state-level mobility. Figure 1 shows and visualizes the correlations between

each mobility metric. The top right of the plot displays the correlations, the diagonal displays the estimated

density, and the bottom left displays the cross scatterplots.

Figure 1: Comparison of Distance Measures

The high correlation among the three different mobility indices indicate that these are correctly measuring

the similar population mobility number.

All other data is at the daily level. Rainfall data is given as average daily rainfall by state in inches,

which we then average by week. Policy data is reported as the date enacted for each policy by state. To

convert this into a weekly panel data setting, we set each policy to 0 for all weeks prior to enactment and

1 for all other weeks. In our specification, we use Emergency Declarations and Gathering Restrictions as

policy controls because these were implemented by every state, whereas many other policies were not.

We include time series trends of all variables in Texas below. Figure 2 shows the weekly trend of changes

in these variables with vertical lines at policy implementation weeks. Figure 3 shows the daily time series of

mobility levels with vertical lines at policy implementation dates.
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Figure 2: Time Series of Variables in Texas

Figure 3: Time Series of Mobility Level in Texas

4 IV Regression

We choose to use an IV approach over DiD because we believe DiD does not satisfy the parallel trends

assumption. For states that enact mobility restricting policies such as Texas, mobility often spikes prior to

policy implementation (visualized in Figure 3). These spikes happen because of an anticipation effect, where

people rush to grocery stores to buy food and toilet paper. Even if there are parallel pre-trends (i.e. a spike

in mobility for states that didn’t enact such policies), they would be for completely different reasons. As a
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result, we wouldn’t expect the parallel trend to continue in the future.

Estimating Equation 1 through OLS will have omitted variable bias and attenuation bias. This is be-

cause we expect decisions about social distancing to be correlated with unobservables related to COVID-19

mortality rates. For example, people in places where there has been a greater increase in the concentration of

COVID-19 may choose to have a greater increase in social distancing to reduce risk of transmission. Further-

more, we believe that MBi,t is measured with significant error. To avoid the endogeneity and measurement

error issue, we use rainfall as an instrument for mobility. This identification strategy requires that rainfall

satisfies is relevant, exogeneous, and uncorrelated to the measurement errors in MBi,t.

4.1 Instrument Relevance

Rainfall satisfies instrument relevance by making travel more inconvenient, reducing mobility. Looking

at the data, Figure 4 shows the weekly time series of change in mobility and change in rainfall in Texas. The

left plot shows the raw variables and the right plot shows the raw variables residualized from our controls.

Although the relationship is not clear in the raw data, the residualized data show that an increase in rainfall

(conditioning on policy and trend) is associated with a contemporaneous decrease in mobility. Residualizing

from the controls is important because Texas (along with many other states) saw large drops in mobility

after declaring a state of emergency and implementing gathering restrictions.

Figure 4: Time Series of Mobility Change and Rainfall Change in Texas

We can more formally evaluate instrument relevance through a first stage regression. We run the following

regression to examine the effect of rainfall on social distancing measures:

MBi,t = βRi,t + P ′i,tη + ∆Di,t−1 + λiχi + γiχit
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Table Table 1 shows the first stage results.

Table 1: First Stage: Change in Mobility

Descartes Lab Unacast Twitter

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆Avg. Precipitationt –0.679*** –0.684*** –0.791*** –0.622*** –0.683*** –0.685*** –0.714*** –0.726*** –0.433 –0.462 0.104 0.642

(0.122) (0.131) (0.112) (0.154) (0.077) (0.082) (0.076) (0.103) (0.421) (0.493) (0.635) (1.826)

Emergency Declarationt –0.643*** –1.379*** –0.253*** –0.432*** –0.805*** –0.655

(0.090) (0.143) (0.041) (0.076) (0.129) (0.684)

Gathering Restriction (Any)t –0.082 –0.928*** 0.017 –0.431*** –0.235 –0.794

(0.100) (0.161) (0.046) (0.093) (0.141) (0.645)

∆COVID Mortality Per Capitat−1 5,959.519*** –1.39e+04*** 4,243.694*** –4155.311 3.03e+05*** 2.32e+06

(2,196.567) (5,050.702) (1,371.104) (3,141.586) (1.08e+05) (3.57e+06)

Constant –0.225*** –0.195*** 0.407*** –6.665*** –0.234*** –0.229*** –0.058** –0.602 –0.633*** –0.735*** –0.230*** 3.802

(0.005) (0.001) (0.035) (2.066) (0.002) (0.002) (0.024) (1.030) (0.014) (0.025) (0.061) (19.351)

N 400 400 400 400 450 450 450 450 260 260 200 200

R2 0.027 0.031 0.196 0.727 0.065 0.067 0.192 0.591 0.005 0.027 0.391 0.714

Adj. R2 0.025 –0.108 0.073 0.557 0.063 –0.050 0.084 0.379 0.002 –0.218 0.170 –0.238

State FE No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

State · Week No No No Yes No No No Yes No No No Yes

F -stat 31.2 27.4 49.9 16.4 79.0 69.9 87.2 49.9 1.05 .877 .027 0.124

Robust standard errors in parentheses. Standard errors clustered by state.

Both for Descartes Lab data and Unacast data, we find that an increase of 1 inch of rain is associated with

about a 0.7 standard deviation decrease in mobility using columns (3) and (4). Both of these coefficients

are very significantly different from zero and have F statistics above 10. This is consistent with instrument

relevance. In the Twitter data, we do not find a significant relationship between rainfall and mobility,

so we do not proceed with this mobility measurement. We believe this is caused by the slightly different

methodologies used by the Twitter data. Twitter location data comes from Twitter posts. Since people are

more likely to tweet when indoors (e.g. at home or at work), Twitter captures movement that people must

do regardless of how rainy it is outside. As a result, Twitter has a strong (but somewhat weaker) correlation

to Descartes Lab and Unacast but no correlation to rainfall.

Figure 5 shows the relationship between social distancing measures and rainfall from the first stage

results, residualizing for our controls.
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Figure 5: First Stage: Residualized Rainfall Change versus Residualized Social Distancing Change

These figures show the strong negative correlation between the residualized social distancing measures and

residualized rainfall. This gives a visual representation of the relevance of our instrument.

4.2 Exclusion Restriction

There is limited scientific literature about the relationship between COVID-19 and meterological variables

since we are so early in the pandemic. Li et al. (2020) study the effects of temperature and many other

variables on COVID-19 outcomes, but do not have an identification strategy for showing causality. Tosepu

et al. (n.d.) specifically study the effect of weather on COVID-19 in Indonesia. They find that rainfall is not

significantly correlated with transmission or outcomes, but that temperature is. They also cite several other

studies that find a correlation between temperature & humidity and basic reproduction number, transmission,

and mortality of COVID-19. However, the authors admit that their study and many others do not account

for many omitted factors such as population mobility, population endurance, and virus resistance.

Due to the limitations of available scientific research on COVID-19, we also consider other virology

research. In a literature review, Pica and Bouvier (2012) claim that the empirical relationship between pre-

cipitation and transmission of respiratory syncytial viruses is largely inconclusive and country (even province)

dependent. They do note that there generally is a relationship between influenza and rainfall; however, unlike

the relationships for humidity and temperature, the authors do not discuss known mechanisms that explain

the relationship between virus transmission and rainfall. Lowen and Steel (2014), who discuss weather-based

predictors for influenza transmissions, argue that temperature and relative humidity are the primary drivers

of the relationship between the rainy season and the influenza virus. They find in a guinea pig experiment

that temperature and relative humidity affect virus transmission and review several scientific models through

which these factors affect virus transmission. Such mechanisms include virus-based ones (e.g. stability of

the virus shell) and human-based ones (e.g. human immune response to viruses).
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Despite the known relationships between weather and the spread of other viruses, for the coronavirus

specifically, it is too early to determine the causal link between weather and transmission. This is to be

expected as the literature is only a few months old. For other viruses, there seems to be a well documented

causal relationship between temperature & humidity and virus transmission. In contrast, the relationship

between other virus transmission and rainfall seems non-robust. This could show that there are no biological

factors affected by rainfall (because we expect biological factors to stay consistent across countries), and

the effects are only driven by human behavior reacting to rainfall (our first stage story). As a result, their

non-robust estimates may be a sign of no true relationship and primarily measuring omitted variable bias.

4.3 Identifying Assumptions

Since we have panel data, we need to consider the identifying assumptions that are required for consistent

estimates in panel regressions. Specifically, we need strict exogeneity and no serial correlation. Strict

exogeneity implies the following:

E[εit|Xi1, . . . , XiT , λi] = 0 ∀t

where Xit is a matrix of controls and λi is the state fixed effect. No serial correlation implies the following:

Corr(εit, εis|Xi, λi) = 0 ∀t 6= s

Adda (2016) discuss this issue for infection data. They note that while serial correlation may occur, this

can be remedied through the use of instrumental variables. Qiu et al. (2020) note that any linear equation

relating changes in coronavirus rates over time will be subject to two forms of serial correlation. First, in

general the number of new infections for most diseases increases, peaks, then decreases over time. Second,

local clusters that cause spikes in infection rates will lead to persistent effects on error terms. They propose

following the framework developed in Adda (2016) and using past weather as an instrumental variable.

To show strict exogeneity, we will argue that the weather IV’s exclusion restriction applies for all weeks,

not just the contemporaneous week. There is no lagged dependence concern because we select the appropriate

lag using our LASSO procedure. Additionally, Pica and Bouvier (2012) conducts a literature review including

articles that aggregate precipitation over long periods (one month) without finding a conclusive relationship

between precipitation and respiratory virus infection. While exogeneity for one month does not imply

exogeneity for all time, we do not expect rainfall to effect virus transmission more than one month in the

future or past. This agrees with our intuition that the virus cannot act on weather that has not happened,

nor does it alter its behavior today based on past weather.
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5 LASSO Implementation: Variable Selection

As mentioned before, it is difficult to determine how many (J) or which relevant lagged terms to include

in our regression. To preclude an arbitrary choice of lags, we use the data to determine the optimal lags to

include. We do this using LASSO, a shrinkage method that selects covariates by introducing a constraint.

Running LASSO directly on the empirical model has two problems: first, it could deselect an important

control and cause omitted variable bias; second, MBi,t is endogeneous without first applying the instrument.

In our LASSO procedure, we solve the following minimization problem:

min
β

N∑
i=1

Di,t − β0 −
J∑
j=1

βjMBi,t−1+j − C ′i,tη

2

subject to

P∑
j=1

|βj |≤ t

where C are the controls explained in Section 2.1. The coefficients on the controls, η, are not in the constraint

because we do not want to regularize them. We can represent the LASSO problem equivalently in terms of

the following Lagrangian form:

min
β

N∑
i=1

Di,t −
J∑
j=1

βjMBi,t−1+j − C ′i,tη

2

+ λ

P∑
j=1

|βj |

where we have a one-to-one mapping between t and λ. λ can be interpreted as the Lagrangian multiplier

associated with the constraint, or the level of parsimony we would like the linear model to have. By the

Frisch-Waugh theorem, we can residualize MBi,t and Di,t from Ci,t to get equivalent results:

min
β

N∑
i=1

D̃i,t −
J∑
j=1

βjM̃Bi,t−1+j

2

+ λ

P∑
j=1

|βj |

where D̃i,t are the residuals of an OLS regression of Di,t on Ci,t and M̃Bi,t−1+j are the residuals of an OLS

regression of MBi,t−1+j on Ci,t. To resolve the endogeneity issue, we convert MB to M̂B, the fitted values

of MB from the IV first stage. Finally, to ensure that LASSO doesn’t over-weight high variance variables we

normalize all variables to be mean 0 and standard deviation 1. Mathematically, we are running the following

regression:

MCDi,t = MCM̂Bβ + λ|β|

where MC = 1 − C(C ′C)−1C ′. In summary, we apply LASSO to mobility projected onto the instrument

described in Section 3 and residualized from the controls. Projecting onto the instrument ensures LASSO
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picks an exogeneous lag, and residualizing from the controls ensures that LASSO keeps all of the controls.

We then run 2SLS using the lags selected by LASSO and the controls.

In general, LASSO estimates are biased, which is why we use it only to select the correct lagged terms.

Empirical evidence shows that LASSO finds correct variables under a sparse data generating process. Here,

we believe that mobility today will affect virus mortality only up to a certain point in the future. Moreover,

mobility today is unlikely to affect COVID-19 related mortality in the near future due to the incubation

period. Therefore, it seems reasonable to conclude we have a sufficiently sparse data generating process to

effectively use LASSO for variable selection.

5.1 LASSO Implementation

We use cross-validation to find the λ that gives us the least out-of-sample MSE. The LASSO implemen-

tation procedure can be summarized as the following:

1) Split the data into in-sample and out-of-sample data.

2) Using the in-sample data, generate MCDi,t and MCMBi,t. These are residuals from an OLS regression

of Di,t and MBi,t on Ci,t, respectively.

3) Using the in-sample data, regress MCMBi,t on Ri,t and store the predicted M̂CMBi,t. This is equiv-

alent to the predicted values from the first stage of an IV regression.

4) Consider a list of possible λ values that can be used for the LASSO regression.

5) For each λ, using the in-sample data, run the following LASSO Regression:

MCDi,t = M̂CMBi,tβ + λ|β|

6) Using the out-of-sample data, calculate the MSE based on our estimates from (5). Store the MSE

value.

7) Repeat (5) - (6) for the range of λ considered in (4). Choose the λ that gives the lowest MSE, plus

one standard error.

8) Given this optimal λ parameter, find the lagged variables where βi > 0.

We used the function by Friedman et al. (2010) (glmnet R library) to pick λ via cross validation and run

the LASSO regression.
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5.2 LASSO Results

The following plot represents the coefficient estimates for a range of λ.

Figure 6: Coefficient Estimates for a range of λ

Based on theory, we expect less coefficients to be selected as λ increases. This is consistent with our graph

in Figure 6. As we can see, mobility lagged by three weeks is very different from zero and will be selected

from the LASSO regression.

The optimal λ was selected using cross validation and comparing MSE for a range of λ:

Figure 7: MSE for Range of λ

The optimal λ is not clear from Figure 7. We use the λ value that is one standard error away from the

minimum MSE, as is usually done with LASSO to reduce overfit. This one standard error value chooses

exactly one coefficient different from zero. Therefore, we use only the social distancing measure lagged by

three weeks as an independent variable. This choice of lag is consistent with the broader literature: Qiu

et al. (2020) include climate variables as instruments lagged at both three and four weeks based on the
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widely known incubation period of around 2 weeks; Dave et al. (2020) assumes there is a 3-week lagged

effect between the adoption of shelter-in-place orders and changes in COVID-19 mortality rates; and Zhang

et al. (2020) find there is a 3-week effect of changes in mobility on fever rates.

6 Regression Results

Our second stage IV regression results can be seen in Table 2:

Table 2: Second Stage: Change in COVID Mortality Per Capita (lag 3)

Descartes Lab Unacast Twitter

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

∆Mobilityt−3 1.72e-05*** 1.04e-05** 7.34e-06* 2.90e-06 2.20e-05** 2.35e-05** 1.51e-05* 3.52e-06 –9.47e-05 –9.09e-05 1.86e-04 1.71e-05

(6.21e-06) (4.32e-06) (4.15e-06) (3.66e-06) (9.58e-06) (1.02e-05) (8.38e-06) (2.84e-06) (9.47e-05) (8.76e-05) (9.81e-04) (3.67e-05)

Emergency Declarationt−3 –1.22e-06 –8.53e-07 6.70e-06*** –7.93e-06*** 1.53e-04 6.40e-06

(4.95e-06) (4.49e-06) (2.16e-06) (3.02e-06) (7.84e-04) (2.74e-05)

Gathering Restriction (Any)t−3 2.36e-05*** –2.74e-06 2.25e-05*** –1.90e-06 5.89e-05 6.16e-06

(7.10e-06) (2.86e-06) (7.42e-06) (2.05e-06) (2.31e-04) (1.31e-05)

∆COVID Mortality Per Capitat−4 4.24e-01 –6.80e+00*** 9.19e-01** –5.82e+00*** –5.21e+01 –8.34e+00

(4.37e-01) (1.61e+00) (4.01e-01) (1.29e+00) (2.97e+02) (2.80e+01)

Constant 2.80e-05*** 1.27e-05*** –1.85e-06 –7.39e-05*** 2.50e-05*** 1.52e-05*** –3.67e-06 –7.79e-05*** –5.21e-05 –6.11e-05 4.25e-05 –1.01e-04

(6.35e-06) (1.87e-06) (2.44e-06) (1.64e-05) (6.46e-06) (3.64e-06) (2.32e-06) (1.68e-05) (5.95e-05) (6.24e-05) (2.32e-04) (7.33e-05)

N 250 250 250 250 300 300 300 300 260 260 200 200

R2 . 0.626 0.706 0.970 . 0.434 0.611 0.958 . . . 0.827

Adj. R2 . 0.531 0.626 0.949 . 0.321 0.527 0.936 . . . 0.641

State FE No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes

State · Week No No No Yes No No No Yes No No No Yes

Robust standard errors in parentheses. Standard errors clustered by state.

Our regression results imply that we expect a positive relationship between mobility and COVID-19 related

mortality. We will use column (3) and column (7) to interpret our results. Column (4) includes an additional

control of state times week interactions. This will add an additional 50 coefficients to estimate. However,

for each state, we have only five weeks, or five observations, and thus we do not expect to get significant

estimates. On average, we estimate a 7.34× 10−6 per capita increase from a one standard deviation increase

in the difference of mobility measurement by Descrates Lab in a week, controlling for emergency declaration

and gathering restriction policies. Similarly, we estimate a 15.1 × 10−6 per capita increase from a one

standard deviation increase in the difference of mobility measurement by Unacast in a week, controlling

for emergency declaration and gathering restriction policies. The average COVID-19 related mortality per

capita is 96.7× 10−6 for the week of April 20 in our data. Therefore, our estimates indicate that the change

in mobility levels have a substantial effect on COVID-19 related mortality.

We note that the IV estimates on mobility measured by Descartes Lab and Unacast are similar with

overlap in the 95% confidence interval. If we assume that mobility has a homogeneous effect on COVID-19

related deaths, we believe these results indicate we have a good instrument that is able to purge away the

mobility measure from the measurement error component. Moreover, we run a test with a null hypothesis
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that the estimates on mobility are the same from Descartes and Unacast Lab. Then, we have a p-value of

0.4090, and thus we cannot reject the null hypothesis.

Our coefficient estimates on emergency declaration and gather restriction policies are positive and signif-

icant. However, we would expect to see negative coefficients, as these policies are implemented in the hopes

of reducing COVID-19 mortality. We believe these results arise from endogeneity problems. For example,

states that believe they are at higher risk from COVID-19 are likely to have stricter policy responses and

at earlier dates. Our instrument, rainfall, only allows us to estimate the exogenous effect of mobility on

COVID-19. Since we do not have other instruments, our policy controls will be biased. While the policy

controls are biased, it is still important to include them in our regression model because they are correlated

with mobility.

7 Measurement Error Bias

We believe that mobility measures are contaminated by measurement error for two reasons. First,

mobility measures are sourced from a limited number of phones. Therefore, these measures suffer from

sampling noise. Second, mobility is measured differently by each source. Therefore, errors may arise directly

from the technology used for data collection or indirectly through the methodology used to convert the raw

data into mobility measures. Without correcting for measurement error, a simple OLS regression will recover

coefficients that are biased towards zero (attenuation bias). In this section, we investigate how much of the

bias on the estimates of the causal effect of mobility on COVID-19 mortality comes from measurement error

and endogeneity problems following the methodology proposed by Acemoglu et al. (2001).

Since we have two noisy measurements of mobility, we can use one as an instrument for the other. We

have instrument relevance because they both measure the same true value (population mobility). However,

this IV does not solve for possible endogeneity, because mobility still remains a choice variable that is likely

correlated with unobservables that affect COVID-19 related mortality. In contrast, an instrument, such as

rainfall, that is relevant, exogenous, and uncorrelated with the measurement errors can resolve both the

measurement error and endogeneity problems. By projecting mobility onto our instrument, rainfall, we can

purge the measurement error from the mobility and focus solely on the effects of exogenous variation in

mobility on COVID-19 related mortality. Acemoglu et al. (2001) describes a process that uses estimates

from both instruments to measure the bias from measurement error and endogeneity.
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We are interested in estimating the causal effect of mobility on COVID-19 mortality. We apply Frisch-

Waugh Theorem to our empirical model in Section 2.1 as the following:

Dit = β1MBi,t−2 + η1Ti,t−2 + η2Pi,t−2 + λi + εi,t

Dit = β1MBi,t−2 + ηCi,t−2 + εi,t

⇔MCDit = β1MCMBi,t−2 + εi,t

where MCDit and MCDi,t−2 are residuals from an OLS regression of Di,t and MBi,t−2 on controls. In our

setting, we have two measurements of mobility MB and an instrument rainfall z:

• M̃B1: a random variable that measures MB with error, so that

M̃B1 = MB + u1

⇔MCM̃B1 = MCMB +MCu1

• M̃B2: another random variable that measures MB with error, so that

M̃B2 = MB + u2

⇔MCM̃B2 = MCMB +MCu2

• Rainfall z: a good (relevant and exogenous) instrument for mobility

We make five reasonable assumptions about the measurement errors. First, we believe that the mea-

surement errors on mobility indices are uncorrelated with individuals’ decision to social distance because

individuals generally do not know or care about their phone being tracked. Therefore, given a constant

matrix MC , we have that:

Cov(MB,u1) = Cov(MB,u2) = 0

⇒ Cov(MCMB,MCu1) = MC(MB,u1)M ′C = 0

⇒ Cov(MCMB,MCu2) = MC(MB,u2)M ′C = 0

(Assumption 1)

Second, it’s reasonable to assume that different companies using similar methodologies collect data from

different phones. Therefore, the measurement error from one source is uncorrelated with the measurement

error from the other source:

Cov(u1, u2) = 0 (Assumption 2)

Third, we believe that the measurement errors on mobility indices are not correlated with the controls
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included in the empirical model. This is because we believe the measurement errors are random errors

and are not systematic errors that depend on changes in the controls. Therefore, we have Cov(C, u1) =

Cov(C, u2) = 0. This implies the following:

MCu1 = u1

MCu2 = u2

(Assumption 3)

We require two more assumptions about the measurement errors in relation to the instrument rainfall

and error term in the empirical model:

Cov(ε, u1) = Cov(ε, u2) = 0

Cov(z, u1) = Cov(z, u2) = 0
(Assumption 4)

Here, we believe that these are reasonable assumptions because our proposed sources of measurement error

(choice of phones to track and measurement methodology) are uncorrelated with rainfall and COVID-19

mortality. Moreover, our second stage IV regression results in Section 6 imply that we have Cov(Z, u1) =

Cov(z, u2) because the coefficient on mobility from the two IV regressions using Descartes Lab and Unacast

are similar and overlap in the 95% confidence interval. In other words, our instrument was successful in

purging out the measurement error component from mobility.

7.1 OLS Regression

Let’s examine the βOLS1 coefficient on M̃B1 for the regular OLS regression. We can express βOLS1 as the

following using the Frisch-Waugh Theorem:

βOLS1 =
Cov(MCD,MCM̃B1)

V ar(MCM̃B1)

=
Cov(MCD,MCMB +MCu1)

V ar(MCM̃B1)

=
Cov(MCD,MCMB)

V ar(MCM̃B)
+
Cov(MCD,u1)

V ar(MCM̃B1)

=
Cov(β1MCMB + ε,MCMB)

V ar(MCM̃B1)
+
Cov(MCD,u1)

V ar(MCM̃B1)

= β1
V ar(MCMB)

V ar(MCM̃B)
+
Cov(ε,MCMB)

V ar(MCM̃B1)
+
Cov(MCD,u1)

V ar(MCM̃B1)
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Here, we have the following:

Cov(MCD,u1)

V ar(MCM̃B1)
=
Cov(β1MCMB + ε, u1)

V ar(MCM̃B1)

= β1
Cov(MCMB,u1)

V ar(MCM̃B1)
+

Cov(ε, u1)

V ar(MCM̃B1)

Assuming that Cov(MCMB,u1) = 0 and Cov(ε, u1) = 0 from (Assumption 1) and (Assumption 4), we get:

βOLS1 = β1
V ar(MCMB)

V ar(MCM̃B1)
+
Cov(ε,MCMB)

V ar(MCM̃B1)

7.2 IV regression with z as instrument

Now, consider the IV estimator βIV1,z of M̃B using rainfall z as an instrument. By Frisch-Waugh we can

express βIV1,z as:

βIV1,z =
Cov(MCD, z)

Cov(MCM̃B1, z)
=

Cov(β1MCMB + ε, z)

Cov(MCMB +MCu1, z)
=
Cov(β1MCMB + ε, z)

Cov(MCMB + u1, z)

Here, we assume that Cov(z, u1) = 0 and Cov(z, ε) = 0 from (Assumption 4). Then, we have the following:

βIV1,z =
Cov(β1MCMB + ε, z)

Cov(MCMB + u1, z)
= β1

7.3 IV regression with M̃B as instrument

Consider using M̃B2 as an instrument for M̃B1. In this setting, we have relevance because they are both

measurements of the same population mobility number. However, we do not fulfill the exclusion restriction
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requirement. We can express βIV
1,M̃B2

as the following using the Frisch-Waugh Theorem:1

βIV
1,M̃B2

=
Cov(MCD,MCM̃B2)

Cov(MCM̃B1,MCM̃B2)

=
Cov(β1MCMB + ε,MCMB + u2)

Cov(MCMB + u1,MCMB + u2)

=
β1Cov(MCMB,MCMB) + β1Cov(MCMB,u2) + Cov(ε,MCMB) + Cov(ε, u2)

Cov(MCMB,MCMB) + Cov(MCMB,u1) + Cov(MCMB,u2) + Cov(u1, u2)

Here, we assume that Cov(MCMB,MCu1) = Cov(MCMB,u1) = 0, Cov(MCMB,MCu2) = Cov(MCMB,u2) =

0, Cov(ε, u2) = Cov(u1, u2) = 0 from (Assumption 1) and (Assumption 4). Then, we have the following:

βIV
1,M̃B2

= β1 +
Cov(ε,MCMB)

V ar(MCMB)

7.4 Identification

Given the assumptions and coefficient results from Section 7.1, Section 7.2, and Section 7.3, let’s identify

the unobserved quantities: β1, Cov(ε,MCMB), V ar(MCMB), and V ar(u1). We have the following:

βOLS1 = β1
V ar(MCMB)

V ar(MCM̃B1)
+
Cov(ε,MCMB)

V ar(MCM̃B1)
(7.4.1)

βIV1,z = β1 (7.4.2)

βIV1,x̃2
= β1 +

Cov(ε,MCMB)

V ar(MCMB)
(7.4.3)

First, we assume that Cov(MCMB,MCu1) = Cov(MCMB,u1) = 0 from (Assumption 1). Therefore, we

have the following:

V ar(MCM̃B1) = V ar(MCMB +MCu1) = V ar(MCMB) + V ar(u1) (7.4.4)

1Here, for algebraic simplicity, we use MCM̃B2 instead of M̃B2. We know that using either instruments yields the same
coefficient βIV

1,M̃B2
. We have the following regression:

Dit = β1MBi,t−2 + ηCi,t−2 + εi,t

Using 2SLS, we first get M̂Bi,t−2 using either M̃B2 or MCM̃B2. Here, the predicted M̂Bi,t−2 can be calculated as the
following:

M = ξ0 + ξ1M̃B2 + ξ2C + µ

M = α0 + α1MCM̃B2 + α2C + ν

Applying Frisch-Waugh Theorem, we have the following:

M = ξ0 + ξ1MCM̃B2 + µ

M = α0 + α1MCM̃B2 + ν

because MCMCM̃B2 = MCM̃B2. So, we have the same predicted M̂Bi,t−2 using either instruments, M̃B2 or MCM̃B2. This
will lead to the same coefficient βIV

1,M̃B2
.
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By substituting the expression for V ar(MCM̃B1) into (7.4.1), we have the following:

βOLS1 (V ar(MCMB) + V ar(u1)) = β1V ar(MCMB) + Cov(ε,MCMB) (7.4.5)

From expression (7.4.3), we have the following:

βIV1,x̃2
V ar(MCMB) = β1V ar(MCMB) + Cov(ε,MCMB) (7.4.6)

Combining (7.4.4) and (7.4.5), we have the following:

βOLS1 (V ar(MCMB) + V ar(u1)) = βIV1,x̃2
V ar(MCMB) (7.4.7)

Here, if we substitute the expression of (7.4.4), we have the following:

V ar(MCMB) =
βOLS1

βIV1,x̃2

V ar(MCM̃B1) (7.4.8)

From (7.4.4), substituting the expression for V ar(MCMB), we have the following:

V ar(u1) =

(
1− βOLS1

βIV1,x̃2

)
V ar(MCM̃B1)

By substituting the expression for V ar(MCMB) and β into (7.4.3), we have the following:

Cov(ε,MCMB) =
βOLS1

βIV1,x̃2

(βIV1,x̃2
− βIV1,z )V ar(MCM̃B1)

7.5 Bias Calculation

Given the expressions of the unobserved quantities in Section 7.4, we can now measure the bias from

measurement error and endogeneity. From the naive OLS regression, we have the following:

βOLS1 = β1
V ar(MCMB)

V ar(MCM̃B1)
+
Cov(ε,MCMB)

V ar(MCM̃B1)

Therefore, we have the following:

• The omitted variable bias if you observed MCMB and used it in the initial regression can be represented

as the following:
Cov(ε,MCMB)

V ar(MCMB)
= βIVx̃2

− βIVz
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• The bias due to the omitted variables in βOLS can be represented as the following:

Cov(ε,MCMB)

V ar(MCM̃B1)
=
βOLS

βIVx̃2

(
βIVx̃2
− βIVz

)

• The bias due to measurement error in βOLS can be represented as the following:

V ar(MCMB)

V ar(MCM̃B1)
=
βOLS

βIVx̃2

The following are relevant regressions necessary to calculate the bias coming from measurement error and

endogeneity.

Table 3: Second Stage: Change in COVID Mortality Per Capita

OLS 2SLS Measurement Error

(1) (2) (3)

∆Mobilityt−3 –2.65e-06 1.51e-05* –1.12e-06

(2.51e-06) (8.38e-06) (2.67e-06)

Emergency Declarationt−3 1.98e-06 6.70e-06*** –6.53e-06

(2.01e-06) (2.16e-06) (4.31e-06)

Gathering Restriction (Any)t−3 1.83e-05*** 2.25e-05*** 1.96e-05***

(6.42e-06) (7.42e-06) (6.34e-06)

∆COVID Mortality Per Capitat−4 1.66e+00*** 9.19e-01** 9.00e-01

(6.14e-01) (4.01e-01) (5.79e-01)

Constant –4.96e-06* –3.67e-06 9.37e-07

(2.67e-06) (2.32e-06) (1.48e-06)

N 306 300 250

R2 0.630 0.611 0.714

Adj. R2 0.551 0.527 0.636

State FE Yes Yes Yes

Robust standard errors in parentheses. Standard errors clustered by state.

With these estimates, we can calculate the bias as the following:

• The omitted variable bias if you observed MCMB and used it in the initial regression can be represented

as the following:

Cov(ε,MCMB)

V ar(MCMB)
= βIVx̃2

− βIVz = −1.12× 10−6 − 1.51× 10−5 ≈ −1.62× 10−5

• The bias due to the omitted variables in βOLS can be represented as the following:

Cov(ε,MCMB)

V ar(MCM̃B1)
=
βOLS

βIVx̃2

(
βIVx̃2
− βIVz

)
=
−2.65× 10−6

−1.12× 10−6
(−1.12× 10−6 − 1.51× 10−5) ≈ −3.84× 10−5
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• The bias due to measurement error in βOLS can be represented as the following:

V ar(MCMB)

V ar(MCM̃B1)
=
βOLS

βIVx̃2

=
−2.65× 10−6

−1.12× 10−6
≈ 2.37

The above results show us that the attenuation bias from measurement error is much larger than the bias from

endogeneity. This suggests that researchers should be much more concerned about bias from measurement

error than from endogeneity when using mobility data. Moreover, we must be very skeptical when interpreting

results that use mobility measurements but do not correct for measurement error.

8 Conclusion

This paper investigates the causal effect of mobility on COVID-19 related mortality. Many papers evaluate

the effectiveness of government policy, such as emergency declarations and stay at home orders, on COVID-

19 related mortality. Politicians expect these policies to reduce mortality through their effect on mobility,

making it very important to evaluate the causal relationship between mobility and COVID-19 mortality.

However, we believe that mobility measurements are contaminated by measurement error. Additionally,

population mobility is a choice variable that is correlated with unobservables such as perceived risk from

COVID-19. To resolve measurement error and endogeneity, we instrument mobility with rainfall, which is

uncorrelated with the measurement error. To find the partial effects of measurement error and endogeneity,

we use mobility indices from two different organizations.

Our IV regression results show a positive relationship between mobility and COVID-19 related mortality.

Specifically, we find that a one standard deviation increase in the weekly change in mobility is associated

with a 7.34 × 10−6 per capita (7.34 per million) increase in mortality 3 weeks in the future. This is a

substantial effect considering that the average COVID-19 related mortality for the week of April 20 in our

data is 96.7×10−6 (96.7 per million). We also follow the strategy used by Acemoglu et al. (2001) to examine

the bias coming from measurement error and endogeneity. We note that the bias from measurement error is

much larger than that from endogeneity.

We could extend this research by estimating a more nonlinear model that reflects the fact that mobility

reductions would save more lives if a lot of people are currently infected. Mathematically, the regression

would look like:

Dit = β0 + β1 ·MBi,t−3 + β2 ·MBi,t−3 · Ii,t−3 + η1Pi,t + λiχState + γiχState · t+ εi,t

which is our original empirical model with an added interaction term between mobility (MBi,t−3) and

infection rate (Ii,t−3). In this model, a downward spike in mobility at time t would reduce the death rate

by β1 + β2 · Ii,t. The estimates β1 and β2 decompose this effect into the intrinsic effect of mobility versus
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the effect related to the number of people already infected (which part of the “curve” we are on). If we

want to make the above interpretation, we can’t re-run the IV regression with this new empirical model

because mobility and infection rate are both endogeneous. To resolve this, we would need another relevant

and exogeneous instrument for MBi,t · Ii,t. Without an additional instrument, we cannot correctly interpret

β1 as the intrinsic effect of mobility on death rates after controlling for the amplification effect. However,

finding an instrument that satisfies both relevance and the exclusion restriction for the interaction term

MBi,t · Ii,t could be difficult. Instead, it is sufficient to find a good instrument for infection rates alone.2

Ultimately, while our finding of positive effects of social distancing on COVID-19 related mortality is

consistent with past research, we have contributed to existing literature by empirically validating that social

distancing has a three week lagged effect through LASSO and quantifying the effect of measurement error

from mobility data. Our measurement error results indicate that while past research may overstate the

effects of social distancing on COVID-19 related mortality, even corrected estimates are large enough to

justify social distancing measures.

2Consider the following regression:

Dit = β1MBi,t−2 + β2MBi,t−2 · Ii,t−2 + ηCi,t−2 + εi,t

⇔MCDit = β1MCMBi,t−2 + β2MCMBi,t−2 · Ii,t−2 + εi,t

In order to have a consistent estimate of β2, we need the following:

E[MC(MBi,t−2 · Ii,t−2) · εi,t] = 0

When running the IV regression, we need the following where M̂Bi,t−2 comes from the first stage:

E[M̂CMBi,t−2 · Ii,t−2 · εi,t] = 0

⇔ E[I · E[M̂CMB · ε|I]] = E[I · ε · E[M̂CMB|I, ε]]

where M̂CMBi,t−2 = γ̂0 + γ̂1MCz. However, this expression is not equal to zero because we believe that Cov(MCz, I) 6= 0

as rainfall and infection rate may be correlated and thus E[M̂CMB|I, ε] 6= 0. So, we cannot get a consistent estimator for β2.
Instead, we can find an instrument for I as well. In this case, we have the following:

E[M̂CMBi,t−2 · Îi,t−2 · εi,t] = E[ε · E[M̂CMBi,t−2 · Îi,t−2|ε]] = 0

where Îi,t−2 = α̂0 + α̂1z. This holds because M̂CMBi,t−2 and Îi,t−2 are mean independent of ε by construction of a good
instrument.
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